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Highlights 

 A novel ACO based methodology, ACO-C, is proposed for the spatial clustering 

problem with no a priori information on the number of clusters and the 

neighborhoods.

 ACO-C addresses several challenging issues of the clustering problem including 

solution evaluation, extraction of local properties, scalability and the clustering 

task itself.

 Two objective functions are proposed to quantify the quality of a clustering 

solution with arbitrary shaped clusters and different densities.

 ACO-C works in a multi-objective framework, and yields a set of non-dominated 

solutions.

 Experimental results show that ACO-C outperforms other competing approaches. 

Abstract

In this work we consider spatial clustering problem with no a priori information. The 

number of clusters is unknown, and clusters may have arbitrary shapes and density 

differences. The proposed clustering methodology addresses several challenges of the

clustering problem including solution evaluation, neighborhood construction, and data 
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set reduction. In this context, we first introduce two objective functions, namely adjusted 

compactness and relative separation. Each objective function evaluates the clustering 

solution with respect to the local characteristics of the neighborhoods. This allows us to 

measure the quality of a wide range of clustering solutions without a priori information. 

Next, using the two objective functions we present a novel clustering methodology

based on Ant Colony Optimization (ACO-C). ACO-C works in a multi-objective setting

and yields a set of non-dominated solutions. ACO-C has two pre-processing steps: 

neighborhood construction and data set reduction. The former extracts the local 

characteristics of data points, whereas the latter is used for scalability. We compare the 

proposed methodology with other clustering approaches. The experimental results

indicate that ACO-C outperforms the competing approaches. The multi-objective

evaluation mechanism relative to the neighborhoods enhances the extraction of the 

arbitrary-shaped clusters having density variations. 

Keywords: Clustering, Ant Colony Optimization, Multiple objectives, Data set 

reduction. 
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1. Introduction

Cluster analysis is the organization of a collection of data points into clusters 

based on similarity [1]. Clustering is usually considered as an unsupervised 

classification task. That is, the characteristics of the clusters and the number of clusters 

are not known a priori, and they are extracted during the clustering process. In this work 

we focus on spatial data sets in which a priori information about the data set (the number 

of clusters, shapes and densities of the clusters) is not available. Finding such clusters

has applications in geographical information systems [2], computer graphics [3], and 

image segmentation [4]. In addition, clusters of spatial defect shapes provide valuable 

information about the potential problems in manufacturing processes of semiconductors 

[5, 6]. 

We consider spatial clustering as an optimization problem. Our aim is to obtain 

compact, connected and well-separated clusters. To the best of our knowledge, there is 

not a single objective function that works well for any kind of geometrical clustering

structure. Therefore, we first introduce two solution evaluation mechanisms for 

measuring the quality of a clustering solution. The main idea behind both mechanisms is 

similar, and each mechanism is based on two objectives: adjusted compactness and 

relative separation. The first objective measures the compactness and connectivity of a 

clustering solution, and the second objective is a measure for separation. The difference 

between the two mechanisms is the degree of locality addressed in the calculations. The 

main advantage of these objectives is that the length of an edge is evaluated relatively, 

that is, it is scaled relative to the lengths of other edges within its neighborhood. This 
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scaling permits us to evaluate the quality of the clustering solution independent of the 

shape and density of the clusters. 

We implement the proposed solution evaluation mechanisms in a clustering 

framework based on Ant Colony Optimization (ACO). In order to find the target 

clusters, we use two complementary objective functions (adjusted compactness and 

relative separation) in a multiple-objective context. Hence, the output of ACO-C is a set 

of non-dominated solutions. Different from the literature, we are not interested in 

finding all non-dominated solutions or the entire Pareto efficient frontier. ACO-C has 

two pre-processing steps: neighborhood construction and data set reduction. 

Neighborhood construction extracts the local connectivity, proximity and density 

information inherent in the data set. Data set reduction helps reduce the storage 

requirements and processing time for the clustering task. Our experimental results 

indicate that ACO-C finds the arbitrary-shaped clusters with varying densities

effectively, where the number of clusters is unknown. 

Our contributions to the literature are as follows.

1. The proposed solution evaluation mechanisms allow us to quantify the quality of a 

clustering solution having arbitrary-shaped clusters with different densities in an 

optimization context. The use of these evaluation mechanisms is not restricted to ACO. 

They can be used in other metaheuristics and optimization-based clustering approaches. 

2. The proposed ACO-based methodology introduces a general, unified framework for

the spatial clustering problem without a priori information. It includes the solution 

evaluation mechanism, extraction of local properties, data set reduction, and the 

clustering task itself.
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3. ACO-C is a novel methodology for the clustering problem in which there is no a 

priori information, that is,

 the number of clusters is unknown,

 clusters may have arbitrary shapes,

 there may be density variations within the clusters, and

 different clusters may have density differences.

We provide the related literature in Section 2. Section 3 introduces the solution

evaluation mechanisms. The details of ACO-C are explained in Section 4. Section 5 is 

about the empirical performance of ACO-C. First, we set the algorithm parameters using 

a full factorial design. Then, we compare ACO-C with some well-known algorithms. 

Finally, we conclude in Section 6. 

2. Related Literature 

The clustering algorithms can be classified into partitional, hierarchical, density-

based algorithms, and metaheuristics (simulated annealing, tabu search, evolutionary 

algorithms, particle swarm optimization, ACO, and so on). [1], [7] and [8] provide 

comprehensive reviews of clustering approaches. 

In this section, we present the related literature on the solution evaluation 

mechanisms and ant-based clustering algorithms. 

2.1. Solution Evaluation Mechanisms 
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A good clustering solution has compact and connected clusters that are well-

separated from each other. However, quantifying and measuring the clustering 

objectives (compactness, connectivity and separation) for a data set is not a trivial task. 

We review the solution evaluation mechanisms in the literature under four categories: 

partitional approaches, graph-based approaches, clustering validity indices, and multi-

objective approaches. 

Partitional approaches consider objective functions such as minimization of total

variance/distance between all pairs of data points, or minimization of total 

variance/distance between data points and a cluster representative such as k-means [9, 

10] or k-medoids [11]. In these approaches, the number of clusters needs to be given as 

input, and the resulting clusters have spherical or ellipsoid shapes in general. 

In order to handle the data sets with arbitrary-shaped clusters and density 

variations, graph-based approaches are proposed. Objective functions used are

minimization of the maximum edge length in a cluster, maximization of the 

minimum/maximum/average distance between two clusters, and so on [12, 13]. A 

typical complication for such objective functions is illustrated in Figure 1(a). In Figure 

1(a) the maximum edge length within the spiral clusters is larger than the distance 

between these two clusters. In this case elimination of the longest edge causes division 

of the spiral clusters. 

Another research stream in solution evaluation makes use of cluster validity 

indices. Validity indices are used to quantify the quality of a clustering solution and to 

determine the number of clusters in a data set [14, 15]. In an effort to find the target 

clusters, some researchers use validity indices as objective functions in genetic 

algorithms [16, 17, 18, 19, 20, 21]. However, most of the validity indices assume a 
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certain geometrical structure in the cluster shapes. When a data set includes several 

different cluster structures, such as arbitrary shapes and density differences, these 

indices may fail. An example is provided in Figure 1(b). The clustering solutions 

generated by DBSCAN [22] are evaluated using Dunn index [23] with different MinPts

settings (within a range of 1 to 15). The number of clusters found with each setting is 

shown, e.g. 30 clusters are found when MinPts is set to two. Dunn index measures the 

minimum separation to maximum compactness ratio, so a higher Dunn index implies 

better clustering. Although the highest Dunn index (0.31) is achieved for the solutions 

with two and four clusters, the target solution has three clusters with a Dunn index of 

0.09. Hence, Dunn index is not a proper objective function for such a data set. 

[24] evaluates the performance of three clustering algorithms, namely k-means, 

single-linkage, and simulated annealing (SA) by using four cluster validity indices, 

namely Davies-Bouldin index, Dunn index, Calinski-Harabasz index, and index I. 

Compared to other validity indices, index I is found to be more consistent and reliable in 

finding the correct number of clusters. However, the four cluster validity indices are 

limited to extracting spherical clusters only. To handle different geometrical shapes, [25] 

uses a point symmetry-based distance measure in a genetic algorithm. The algorithm has 

difficulty in handling asymmetric clusters and density differences within a cluster. 

- Insert Figure 1 here. -

Since a single objective is often unsuitable to extract target clusters, multi-

objective (MO) approaches are considered to optimize several objectives

simultaneously. To the best of our knowledge, VIENNA [26] is the first multi-objective 
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clustering algorithm, which is based on PESA [27]. It optimizes two objective functions, 

total intra-cluster variance and connectedness. However, the algorithm requires the 

target number of clusters. One of the well-known MO clustering algorithms is the multi-

objective clustering with automatic k-determination (MOCK) [28]. MOCK is based on 

evolutionary algorithms, and uses compactness and connectedness as two 

complementary objective functions. It can detect the number of clusters in the data set. 

The output of the algorithm is a set of non-dominated clustering solutions. However, it is 

capable of finding well-separated clusters having hyperspherical shapes. Improvements 

in this algorithm and its applications have been investigated [29, 30]. [31] also considers

the clustering problem in a multi-objective framework. They optimize Xie-Beni (XB) 

index [32] and Sym-index [21] simultaneously, and introduce a multi-objective SA 

algorithm. This work is also limited to finding symmetric clusters. [33] proposes several

connectivity-based validity indices based on the relative neighborhood graph. In addition 

to Sym-index and index I, [34] uses one of the connectivity-based validity indices in [33]

as the third objective. Adding this connectivity measure helps extraction of arbitrary 

shapes and asymmetric clusters. 

There are additional solution approaches proposed for MO clustering such as 

differential evolution [35, 36], immune-inspired method [37], and particle swarm 

optimization [38]. In these studies clustering objectives are either cluster validity indices

such as XB index, Sym-index and FCM index, or compactness-connectivity objectives as 

in [28]. 

To the best of our knowledge, [39] is the only study that applies ACO to MO

clustering problem. In this algorithm, there are two ant colonies working in parallel. 

Each colony optimizes a single objective function, either compactness or connectedness. 
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The number of clusters is required as input. In addition, they test the proposed algorithm 

using the Iris data set only.

2.2. ACO and Ant-based Clustering Algorithms

ACO was introduced by [40, 41, 42]. It is inspired from the behaviors of real 

ants. As ants search for food on the ground, they deposit a substance called pheromone 

on their paths. The concentration of the pheromone on the paths helps direct the colony 

to the food sources. Ant colony finds the food sources effectively by interacting with the 

environment. Solution representation, solution construction and pheromone update 

mechanisms are the main design choices of ACO. 

In the clustering literature, several ant-based clustering algorithms have been 

proposed. For a comprehensive review about ant-based and swarm-based clustering one 

can refer to [43]. In this study, we categorize the related studies into three: ACO-based 

approaches, approaches that mimic ants’ gathering/sorting activities, and other ant-based

approaches. 

ACO-based approaches [44, 45, 46, 47, 48, 49, 50, 51, 52] are built upon the 

work of [42]. In these studies the total intra-cluster variance/distance is considered as the 

objective function, and the number of clusters is required a priori. An ant constructs a 

solution by assigning a data point to a cluster. The desirability of assigning a data point 

to a cluster is represented by the amount of pheromone. Ants update the pheromone in 

an amount proportional to the objective function value of the solution they generate. The 

proposed algorithms are capable of finding the clusters with spherical and compact 

shapes. There are also hybrid algorithms using ACO [53, 54, 55]. For instance, [53]
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modifies the k-means algorithm by adding a probabilistic centroid assignment procedure.

[54] introduces a hybridization of ACO and particle swarm optimization (PSO). In this 

approach, PSO helps optimize continuous variables, whereas ACO directs the search to 

promising regions using the pheromone values. Another hybrid algorithm that combines 

k-means, ACO and PSO is [55]. In [55] the cluster centers obtained by ACO and PSO 

are used to initialize k-means. In these hybrid studies the number of clusters is required

as input, and the resulting clusters are compact and spherical. 

The approaches that mimic ants’ gathering/sorting activities [56] form another 

research stream. ACO uses an explicit objective function whereas these approaches have

an implicit objective function, and clusters emerge as the result of the gathering/sorting 

activities. An ant picks up a point in the space and drops it off near the points that are 

similar to it. These picking up and dropping off operations are performed using the 

probabilities that are calculated based on the similarity of the points in the 

neighborhood. Hence, ants work as if they are forming a topographic map. After 

forming this pseudo-topographic map, a cluster retrieval operation is applied to find the 

final clusters. [57] generalizes this method for exploratory data analysis. [58, 59, 60, 61, 

62, 63, 64, 65] are the extensions and modifications of the algorithms proposed by [55, 

56]. For instance, [60] uses parallel and independent ant colonies aggregated by a 

hypergraph model. In [65] the local similarity of a point is measured by entropy rather 

than distance.

Other ant-based approaches use the emergent behavior of the ants. [66] 

introduces a hierarchical ant-based algorithm to build a decision tree. Ants move a data 

point close to the similar points and away from the dissimilar ones on the decision tree.

In [67, 68] ants generate tours by inserting edges between data points. Pheromone is 
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updated for each edge connecting a pair of points. The closer the distance between two 

points, the larger the amount of pheromone released. In the first phase of the algorithm, 

the edges between similar points become denser in terms of pheromone concentration. 

The next phase is the cluster retrieval process by using a hierarchical clustering 

algorithm. [69] introduces a clustering approach based on aggregation pheromone.

Aggregation pheromone leads the data points to accumulate around the points with 

higher pheromone density. In order to obtain the desired number of clusters, merging 

operations are performed using the average-linkage agglomerative hierarchical 

clustering algorithm. Another ant-based clustering algorithm is the chaotic ant swarm 

optimization proposed by [70]. It combines the chaotic behavior of a single ant and self-

organizing behavior of the ant colony. Given the number of clusters, the proposed 

approach optimizes the total intra-cluster variation. Although it provides some 

improvement over PSO and k-means, the resulting clusters are still spherical. 

3. How to Evaluate a Clustering Solution?

Our aim is to obtain compact, connected and well-separated clusters. For this 

purpose, we introduce two solution evaluation mechanisms: Clustering Evaluation 

Relative to Neighborhood (CERN) and Weighted Clustering Evaluation Relative to 

Neighborhood (WCERN). 

3.1. Clustering Evaluation Relative to Neighborhood (CERN)

Adjusted Compactness: This objective is built upon the trade-off between the 

connectivity and relative compactness.
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a) Connectivity: Basically, connectivity is the degree to which neighboring data points 

are placed in the same cluster [26, 28]. Then, we first need to define the neighborhood of 

a point. There are several neighborhood construction algorithms such as k-nearest 

neighbors (KNN), ε-neighborhood [22], NC algorithm [71], and so on. When there are 

arbitrary-shaped clusters with density differences, NC outperforms KNN and ε-

neighborhood. It provides a unique neighborhood for each data point. NC also generates

subclusters (closures), which are formed by merging the data points having common 

neighbors. These closures can be used as the basis of a clustering solution. For these 

reasons, we use the NC algorithm to determine the neighborhoods of individual data 

points. 

Let Cm and Clp be the sets of points in cluster m and closure p, respectively. 

Connectivity of cluster m with respect to closure p is ppmmpconnect ClClC  if 

 pm ClC . In the ideal case, connectivity takes a value of one, which means that 

cluster m and closure p fully overlap. The connectivity of cluster m is calculated as 





nc

p
mpm connectconnect

1

, where nc is the total number of closures. In this calculation, 

if  pm ClC , then closure p is part of a cluster other than m, and, in this case, we 

take 1mpconnect  so that the value of mconnect  is not affected by such unrelated 

closure and cluster pairs. Merging multiple closures that are in the same cluster results in 

a connectivity value of one, whereas it is less than one when there are divided clusters. 

b) Relative compactness: We define the relative compactness of cluster m as the most 

inconsistent edge within its neighborhood. In relative compactness calculation we 

consider the edges in the minimum spanning tree (MST) of a cluster. MST is a graph in 
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which the sum of the edge lengths is the minimum, and the graph is connected with no 

cycles. These two properties together allow us to define compactness of a cluster in an 

efficient way. Then, we compare each edge in the MST with the edges in the 

neighborhood. More formally, relative compactness of cluster m is 

 































kl

lk

lk

ij

ji
m d

d
ccompr

jm

im

m

)(

)(

MST),(
or
MST),(

MST),( max
max__ where (i,j) is the edge between points i and j,

dij is the Euclidean distance between points i and j, MSTm and MSTm(i) are the sets of 

edges in the MST of the points in cluster m and in the neighborhood of point i in cluster 

m, respectively.

When the number of clusters increases, relative compactness improves

(decreases) whereas the connectivity deteriorates (decreases). Combining connectivity 

and compactness, adjusted compactness of cluster m is obtained as

m

m
m connect

ccompr
comp

__
 . The overall compactness of a clustering solution is found as 

 m
m

compmax .

Relative Separation: A good clustering solution must have well-separated clusters. We 

define the relative separation based on the local properties of clusters. Let the nearest 

cluster to cluster m be n such that  nmjidjnim nmij  ,C,C:argmin*))(*),(( . 

The relative separation of cluster m is
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 
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The overall separation of a clustering solution is  m
m

csepr __min . CERN 

minimizes the adjusted compactness and maximizes the relative separation. 

3.2. Weighted Clustering Evaluation Relative to Neighborhood (WCERN)

WCERN is similar to CERN; both compactness and separation are calculated 

relative to the neighborhoods. The only difference between CERN and WCERN is that 

the edge lengths are used as a weight factor in compactness and separation calculations

in WCERN. Hence, relative compactness and relative separation of cluster m are 

calculated as  


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Similar to CERN, WCERN minimizes the adjusted compactness, and maximizes

the relative separation. 

4. The ACO-based Clustering (ACO-C) Methodology
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ACO-C is a clustering methodology in a multi-objective framework. It has two 

pre-processing steps: neighborhood construction and data set reduction. Neighborhood 

construction helps extract the local information inherent in the data set. This local 

information is used in the solution evaluation. Data set reduction ensures the scalability

of the approach. 

In ACO-C an ant is a search agent. Ants construct tours by inserting edges 

between pairs of data points. Connected points in a tour form a cluster. During edge 

insertion each point is connected to exactly two points. This makes it easier to extract 

arbitrary-shaped clusters and reduces computational requirements.

The outline of the ACO-C methodology is presented in Figure 2 where max_iter 

and no_ants denote the maximum number of iterations and the number of ants, 

respectively.

- Insert Figure 2 here. -

Step 0. Pre-processing 

Neighborhood Construction

We construct the neighborhood of each data point and obtain closures 

(subclusters) using the NC algorithm [71]. NC closures have two properties: 1) A 

closure is either a cluster itself or a subset of a cluster (divided cluster). 2) There may be 

an outlier mix on the boundary of a closure. Hence, we focus on the merging operations 

and outlier detection in the clustering. In order to allow outlier detection and closure

merging, we extend NC neighborhoods with distant neighbors and nowhere. Distant 

neighbors are the nearest pair of data points between two adjacent closures. Nowhere is 
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a dummy point used for outlier detection. If a data point is connected to nowhere twice, 

then it is classified as an outlier. If a data point is connected to nowhere once, then it is

the start/end point of a cluster. An example for neighborhood definition is provided in 

Figure 3. Points j, k, l, m and n are neighbors of point i generated by NC, and point p is 

the distant neighbor of point i. Neighborhood of point i is extended by point p and 

nowhere. Note that not every point has a distant neighbor. 

- Insert Figure 3 here. -

Data Set Reduction via Boundary Formation

The interior points of a closure are already connected, hence it is sufficient to 

consider only the points on the boundaries of the closures for merging and outlier 

detection. Exclusion of interior points in a closure decreases the number of points in a 

data set and contributes to the scalability of ACO-C. We use the boundary extraction 

algorithm in [72]. 

Step 1. Initialization of parameters

The parameters of ACO-C, including the number of ants (no_ants), the number 

of maximum iterations (max_iter), and the evaporation rate (  ) are initialized. We 

conduct a factorial design in Section 5 to determine the values of these parameters. 

Step 2. Solution construction 
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When an ant starts clustering, the set of unvisited points, Do, is initialized as the 

entire data set, D. For each point in the data set, the set of currently available neighbors, 

NCSi, is initialized as the set of its neighbors, NSi. The current number of clusters (m) is 

set to one. There are two substeps in solution construction: point selection and edge 

insertion. 

Point selection: Every time an ant starts a new tour, a new cluster is formed. When a 

new cluster, Cm, is initialized, a point, say point i, is selected at random from the set of 

unvisited points, Do. Then, the related sets are updated as Cm = Cm U{i}, Do = Do /{i}, 

and NCSk = NCSk /{i} for k Do. If NCSi is non-empty or point i is not nowhere, we 

continue with edge insertion. Otherwise, the construction of the current cluster is 

finished, and a new cluster is initialized by incrementing the cluster index, m, by 1.

Edge insertion: An ant inserts an edge between point i and a point selected from NCSi. 

The pheromone concentration on edge (i,j), ij , represents the tendency of edge (i,j) to 

occur in a cluster. Hence, the probability of selecting edge (i,j) is calculated as






ik
ik

ij
ijp

NCS




 for ij NCS . Then, the ant continues edge insertion starting from point 

j. The initial pheromone concentration is inversely proportional to the evaporation rate,


 1

ij for iji NSD,  . 

Point selection and edge insertion substeps are repeated until Do is empty. The 

details of Step 2 are presented in Figure 4.  

- Insert Figure 4 here. -
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Step 3. Solution evaluation

The performance of a clustering solution is evaluated using CERN and WCERN 

as described in Section 3.

Step 4. Local search

In order to strengthen the exploitation property of ACO-C we apply local search 

to each clustering solution constructed. Conditional merging operations are performed in 

the local search. Let clusters m and n are adjacent clusters considered for merging, and 

let comp and sep be the adjusted compactness and relative separation of the current 

clustering solution, respectively. The adjusted compactness and relative separation after 

merging are comp’ and sep’, respectively. If comp’ ≤ comp and sep’ ≥ sep, clusters m

and n are merged. The clustering solutions at the end of the local search form the set of 

solutions constructed by the ants (SC) in the current iteration. 

Step 5. Pheromone update

Pheromone update is performed for each solution component (edge) so that the 

effect of the solution component is well-reflected in the pheromone concentration. 

There are two important properties about our clustering problem: 1) We are 

interested in arbitrary-shaped clusters with different densities, so reflecting the local 

density, connectivity and proximity relations are crucial in finding the target clusters. 2) 

We use adjusted compactness and relative separation as two complementary objective 

functions. Hence, we use the following pheromone update mechanism. For each data

point i, the incumbent (minimum) adjusted compactness obtained so far for point i, 
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inc_compi, and the incumbent (maximum) relative separation obtained so far for point i,

inc_sepi, are kept in the memory. We check whether or not the adjusted compactness 

and relative separation of the cluster to which edge (i,j) belongs are better than the 

corresponding incumbent values. More pheromone is released if an incumbent improves. 

For all the edges in the clustering solution, E, the amount of pheromone released 

is proportional to the amount of improvement in the incumbents. The initial incumbent 

adjusted compactness and relative separation for each point are taken from the closures 

of the NC algorithm. Formally, the pheromone values are updated as

iijijijij jiw NS,D  )1(   ,     

where 

 
 












otherwise.                                                                                               ,0

E),(if   ,
_,_max

_,_min ),(

),(

ji
sepincsepinc

sep

comp

compinccompinc

w ji

ji

ji

ji

ij       

Step 6. Non-dominated set update

Let s1 and s2 be two clustering solutions generated by the ants. The aim is to minimize 

the maximum adjusted compactness and to maximize the minimum relative separation.

Definition 1: Solution s1 dominates solution s2 if

i) 21 ss compcomp   and 21 ss sepsep  , or

ii) 21 ss compcomp   and 21 ss sepsep  .

Definition 2: If there does not exist any other clustering solutions dominating solution 

s1, then solution s1 is called a non-dominated solution. 
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We update the current set of non-dominated solutions (SN) at the end of each 

iteration using Definitions 1 and 2. We also update the incumbent compactness and 

separation (inc_compi and inc_sepi) for the data set. 

If the maximum number of iterations is not exceeded, Steps 2-6 are repeated. 

Otherwise, ACO-C terminates with the non-dominated solutions in set SN. 

5. Experimental Results for the ACO-C Methodology

In this section, we test the performance of ACO-C empirically. First, we present 

the test data sets and the performance evaluation criteria. Second, using some pilot data 

sets, we conduct a full factorial experiment in order to set the ACO-C parameters. Third, 

we elaborate on the impact of data set reduction. Finally, we compare the performance 

of ACO-C with other clustering algorithms.

The algorithm was coded in Matlab 7.9 and run on a PC with Intel Core2 Duo 

2.33 GHz processor and 2 GB RAM. 

5.1. Data Sets and Performance Evaluation Criteria 

We tested ACO-C using 32 data sets compiled from several sources [73, 74, 75].

These include 2- and higher dimensional data sets with various shapes of clusters 

(circular, elongated, spiral, etc.), intra-cluster and inter-cluster density variations, and 

outliers. Some example data sets are presented in Figure 5. 

We evaluated the accuracy of the clustering solution using Jaccard index (JI) and

Rand index (RI). We define these measures as follows. 

a: the number of point pairs that belong to the same target cluster and are assigned to the 

same cluster in the solution. 
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b: the number of point pairs that belong to the same target cluster but are assigned to 

different clusters in the solution. 

c: the number of point pairs that belong to different target clusters but are assigned to the 

same cluster in the solution. 

d: the number of point pairs that belong to different target clusters and are assigned to 

different clusters in the solution. 

- Insert Figure 5 here. -

cba

a


JI      (1)

dcba

da




RI      (2)

JI is one of the well-known external clustering validity indices. It takes values 

between zero and one, one indicating the target clustering is achieved. RI is also known 

as the simple matching coefficient. While JI focuses on point pairs correctly assigned to 

the same cluster, RI also takes into account the point pairs correctly assigned to different 

clusters. Both indices penalize the division of clusters as well as mixing them. We report 

the maximum JI and RI values in the set of non-dominated solutions. 

5.2. Parameter Settings for ACO-C 

The three parameters of ACO-C are no_ants, max_iter, and  . We set max_iter

to twice the number of points in the data set, and recorded the iteration number in which 

the target clustering was found. We used a full factorial experimental design in order to 
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determine the best settings for no_ants and  . We also studied the impact of the 

solution evaluation function (EF) on the performance of ACO-C. The three factors used 

in the experimental design and their levels are presented in Table 1. We conducted the 

full factorial experiment using a subset of 15 data sets. These 15 data sets were selected 

to represent different properties of all data sets.

- Insert Table 1 here. –

Before discussing the full factorial design results, we present the ACO-C results

for the example data set given in Figure 5(d). The three non-dominated clustering 

solutions found by ACO-C are presented in Figure 6. These solutions include the target 

clustering with a JI value of one. The resulting non-dominated solutions can be 

interpreted as clustering of points in different resolutions.

We also checked the convergence of ACO-C in the example data set. In Figure 7 

the set of non-dominated solutions stays the same after iteration number 70. This implies 

that convergence is achieved.

The main effect plots for the maximum RI and execution time are presented in 

Figure 8. The low setting of the evaporation rate slows the convergence down and 

prevents ACO-C from missing the target solutions. However, the time spent in ACO-C 

increases three times with this setting. Increasing the number of ants used in ACO-C 

provides a slight improvement in the maximum RI in return for increase in the time. 

Considering the trade-offs between the performance and time, the experiments are 

performed with the parameter settings  = 0.01 and no_ants = 5. 
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In Figures 8(a) and 8(b) WCERN performs better than CERN in terms of the 

maximum RI and time. On the other hand, only CERN finds the target clustering in

some data sets, i.e. data sets in Figures 5(d) and 5(e). Hence, CERN ensures finding the 

target clustering that is visible in low resolution. WCERN is more powerful in extracting 

clusters that are visible in higher resolution such as data sets in Figures 5(f) and 5(h). 

CERN and WCERN complement each other in finding the target clusters, so we run 

ACO-C using both evaluation mechanisms. We consider the union of the non-dominated

solutions obtained by both as the final solution set. 

Note that there is no significant interaction among the factors.

- Insert Figure 6 here. -

- Insert Figure 7 here. -

- Insert Figure 8 here. -

5.3. Data Set Reduction 

We tested the impact of data set reduction using 32 data sets. The boundary 

extraction algorithms in [72] were used for data set reduction. The number of points in 

the original data set was compared with the number of points after reduction. 

Table 2 shows the data set reduction percentages for 2- and higher dimensional 

data sets. The reduction percentages vary depending on the shape of the clusters. The 

highest data set reduction percentages are achieved when clusters are convex, as in 
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Figures 5(f) and 5(h). When there are non-convex clusters as in Figure 5(g), the 

reduction percentages are lower. 

In Section 5.4 clustering is performed on the data sets after the reduction.

- Insert Table 2 here. -

5.4. Comparison of the ACO-C Methodology with Others

 The performance of ACO-C is compared with the results of k-means, single-

linkage, DBSCAN, NC closures, and NOM [76]. In our comparisons k-means represents 

the partitional clustering algorithms, and single-linkage the hierarchical clustering 

algorithms. DBSCAN is selected as a representative of the density-based clustering 

algorithms. The number of clusters is an input for k-means and single-linkage, therefore

we run k-means and single-linkage for several values of the number of clusters. This 

number varies between 2-10% of the number of points in the data set with increments of 

1, and the one with the best JI value is selected for each algorithm. In the same manner, 

for DBSCAN, among several MinPts settings the one with the best JI value is selected 

for comparison. NOM is a graph theoretical clustering algorithm. It also uses the 

neighborhoods constructed by the NC algorithm, hence we can elaborate on the impact 

of ACO-C better. For ACO-C, we consider the union of the non-dominated solutions 

obtained with CERN and WCERN settings, and the sum of the execution times with 

CERN and WCERN is considered as the execution time of ACO-C. 
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The results for 32 data sets are summarized in Table 3. ACO-C finds the target 

clusters in 29 data sets out of 32. Single-linkage and NOM follow ACO-C with 24 and 

18 data sets, respectively. ACO-C has the best average JI and RI values, followed by

NOM, NC, DBSCAN and single-linkage. This indicates that ACO-C is able to form 

clusters that are close to the target clusters on the average. Moreover, the standard 

deviations of JI and RI are the smallest, and the minimum values of JI and RI are the 

highest for ACO-C. This indicates that even in the worst case ACO-C performs better 

than the competing approaches.

Typically, ACO-C has difficulty in detecting target clusters when there is noise, 

as for the data set in Figure 5(g). The relative solution evaluation mechanisms of both 

CERN and WCERN are sensitive to density and distance changes, so these points are 

labeled as separate clusters. Although ACO-C yields the general structure of the target 

clusters in such data sets, it forms clusters by enclosing the noise as well. 

- Insert Table 3 here. -

The number of non-dominated solutions generated by CERN and WCERN varies 

between 1 to 6 for different data sets. Hence, the size of the non-dominated sets is 

reasonable for practical use. 

The main limitation of ACO-C is the longer execution times compared to k-

means, single-linkage and DBSCAN, partly due to the Matlab implementation. In this 

respect, improvements are required.

6. Conclusion 
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In this work we consider the spatial clustering problem with no a priori 

information on the data set. The clusters may include arbitrary shapes, and there may be 

density differences within and between the clusters. Moreover, the number of clusters is 

unknown. We present a novel ACO-based clustering methodology, namely ACO-C. In 

ACO-C we combine the connectivity, proximity, density and distance information with 

the exploration and exploitation capabilities of ACO in a multi-objective framework. 

The proposed clustering methodology is capable of handling several challenging issues 

of the clustering problem including solution evaluation, extraction of local properties, 

scalability and the clustering task itself. The performance of ACO-C is tested using a 

variety of data sets. The experimental results indicate that ACO-C outperforms other 

competing approaches in terms of the validity indices JI and RI. In particular, the multi-

objective framework and the solution evaluation relative to the neighborhoods enhance 

the algorithm in extracting arbitrary-shaped clusters, handling density variations, and 

finding the correct number of clusters. ACO-C achieves a reasonable number of non-

dominated solutions for practical use. 

The proposed methodology can generate non-dominated clustering solutions, 

which include the target clustering most of the time. These solutions represent 

alternative clustering patterns having different levels of resolution. Solutions with

different resolutions allow the decision maker to analyze the trade-offs between the

merging and division operations. A future research direction can be to find all the non-

dominated clustering solutions in different resolutions, i.e. the Pareto efficient frontier. 

ACO-C typically has problems with detection of the noise. Also, its execution 

times are relatively longer. The proposed approach can be improved in both areas.
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Figure Captions

Figure 1. (a) Example data set. (b) Dunn index values for the clustering solutions 

generated by DBSCAN with different MinPts settings. 

Figure 2. The outline of the ACO-C methodology.

Figure 3. An example for neighbors of point i.

Figure 4. The details of Step 2.

Figure 5. Example data sets: (a) train2, (b) data-c-cc-nu-n, (c) data-uc-cc-nu-n, (d) data-

c-cv-nu-n, (e) data-uc-cv-nu-n, (f) data_circle, (g) train3, (h) data_circle_1_20_1_1, (i) 

iris (projected to 3-dimensional space), (j) letters. 

Figure 6. Non-dominated clustering solutions for data-c-cv-nu-n, (a) Solution with six 

clusters (JI=1), (b) Solution with three clusters (JI=0.57), (c) Solution with two clusters 

(JI=0.54). 

Figure 7. Convergence analysis for the example data set, data-c-cv-nu-n. 

Figure 8. (a) Main effect plots for maximum RI, (b) Main effect plots for time. 
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Table Captions

Table 1. Experimental factors in ACO-C. 

Table 2. The percentages of data set reduction. 

Table 3. Comparison of ACO-C with k-means, single-linkage, NC closures and NOM 

(32 data sets).
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Factors Level 0 Level 1
evaluation function, EF CERN WCERN
evaporation rate,  0.01 0.05

number of ants, no_ants 5 10
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2-dimensional
data sets

Higher dimensional
data sets

average (%) 42.79 19.11

std. dev. (%) 20.42 12.41

min. (%) 1.52 4.90

max. (%) 74.29 53.84
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k-means
Single-
linkage

DBSCAN NC NOM ACO-C

# of data sets 
TC is found

6 24 13 13 18 29

average 0.71 0.91 0.91 0.93 0.96 0.99

std.dev. 0.24 0.19 0.17 0.12 0.08 0.02
JI

min. 0.28 0.45 0.50 0.56 0.59 0.89

average 0.84 0.94 0.95 0.96 0.98 0.99

std.dev. 0.13 0.14 0.11 0.02 0.08 0.01
RI

min. 0.62 0.53 0.53 0.91 0.59 0.96

average 0.44 4.76 1.29 27.34 235.31 1089.41
std.dev. 0.60 8.47 2.01 71.29 511.85 823.81

min. 0.05 0.38 0.03 0.05 0.07 2.09

Time

max. 2.19 32.60 7.45 318.46 1721.47 2916.20
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Original data set  
(no a priori information, i.e. unknown number of clusters, 

clusters with arbitrary shapes and density differences) 
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Pre-processing: 

• Neighborhood construction 

• Data set reduction 

(boundary extraction) 

• Neighborhoods 

• Subclusters (closures) 

• Boundaries of 

subclusters 
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Clustering Evaluation  

(Relative to the neighborhoods) 

• Adjusted compactness 
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The ACO-C Methodology 

Step 0. Pre-processing (neighborhood construction and data set reduction)            

Step 1. Initialization of parameters 

For t = 1,.., max_iter  

 For s = 1,.., no_ants  

  Step 2. Solution construction  

  Step 3. Solution evaluation  

  Step 4. Local search  

 End for  

 Step 5. Pheromone update  

 Step 6. Non-dominated set update  

End for  

Figure 2



Page 45 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

k 

Closure A 
 

 

       i 

p Closure B 

 

j 

   i 

n 
m 

l 

Figure 3



Page 46 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Step 2. Solution construction 

Set m = 1, Do = D and NCSi = NSi, Di . 

While Do   

2.1. Point selection  

 Select point i from Do at random.  

Set Cm = Cm U{i}, Do = Do /{i}, and NCSk = NCSk /{i} for k Do. 

While NCSi   and i  “nowhere” 

2.2. Edge insertion 

Select edge (i,j) where j   NCSi using probabilities based on ij , 

and insert edge  (i,j).   

Set Cm = Cm U{j}, Do = Do /{j}, and NCSk = NCSk /{j} for k Do. 

Then, set i = j.  

End while 

Set m = m + 1, and start a new cluster.  

End while  

Figure 4



Page 47 of 50

Acc
ep

te
d 

M
an

us
cr

ip
t     

  

 

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

(i) (j) 

Figure 5
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