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In PKCS#1 standard, (p, q, d, dp, dq, qp) is used as a private-key of RSA. Heninger and 
Shacham showed a method which can reconstruct SK = (p, q, d, dp, dq) from a random 
δ fraction of their bits. It succeeds with high probability for small e when δ ≥ 0.27.
In this paper, we show how to reduce the search range of a certain parameter k, which 
is a bottleneck of Heninger–Shacham attack. The bigger δ, the better our method is. More 
precisely, the search range of k is reduced from e to 2e 

(
1 − 1

2−δ

)
.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

RSA is the most popular public-key cryptosystem. Its 
public-key is N = pq and e, where p and q are large 
primes. The secret-key is d such that

ed = 1 mod (p − 1)(q − 1). (1)

In PKCS#1 standard, it is recommended to use a redun-
dant tuple (p, q, d, dp, dq, qp) as a private-key in order to 
allow for a fast Chinese Remainder type decryption pro-
cess, where

dp = d mod p − 1

dq = d mod q − 1

qp = q−1 mod p

Motivated by cold boot attack [2], Heninger and
Shacham showed a method which can reconstruct SK =
(p, q, d, dp, dq) from a random δ fraction of their bits [3]. It 
succeeds with high probability for small e when δ ≥ 0.27.
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The reason why e must be small is as follows. From 
Eq. (1), it holds that

ed = 1 + k(p − 1)(q − 1)

for some k. The method of Heninger and Shacham first 
finds this k by exhaustive search over 1 ≤ k ≤ e − 1. Hence 
e must be small. In particular, it is so even for large δ.

In this paper, we show how to reduce the search range 
of k. The bigger δ, the better our method is. More precisely, 
the search range of k is reduced from e to 2e 

(
1 − 1

2−δ

)
.

2. Heninger and Shacham attack

Let a[i] denote the i-th bit of a positive integer a, where 
a[0] denotes the least significant bit of a. Define a[0, i − 1]
as

a[0, i − 1] = a mod 2i .

In RSA, the following equations hold:

N = pq, (2)

ed = 1 + k(p − 1)(q − 1), (3)
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edp = 1 + kp(p − 1), (4)

edq = 1 + kq(q − 1). (5)

Assume that we know δ fraction of SK = (p, q, d,

dp, dq). In Heninger–Shacham attack, we first determine 
the value k of Eq. (3). Since we have 0 < k < e d

φ(N)
< e, 

we can determine the correct k by exhaustive search over 
0 < k < e.

For each k′ , we define

d̃(k′) ≡ �1 + k′(N + 1)

e
�. (6)

As Boneh, Durfee, Frankel observe [1], when k′ equals k, 
this gives an approximation for d:

0 ≤ d̃(k) − d ≤ k(p + q)/e < p + q.

In particular, when p and q are balanced, we have p +
q < 3

√
N , which means that d̃(k) agrees with d on their 

�n/2� − 2 most significant bits.
Hence we enumerate d̃(1), · · · , ̃d(e −1) and check which 

of these agrees, in its more significant half, with the 
known bits of d̃. Provided that δ n

2 
 lg e, there will be just 
one value of k′ for which d̃(k′) matches; that value is k.

Once k is found, we can compute kp , kq of Eqs. (4)
and (5) as follows. It holds that [3]

kp + kq = k(N − 1) + 1 mod e (7)

kpkq = −k mod e (8)

Hence kp is a solution of the following quadratic equation.

x2 − (k(N + 1) + 1)x − k = 0 mod e.

When e is a prime, it has two roots. When e has m distinct 
primes, it has 2m roots. One of them is the correct value 
of kp . The value of kq is automatically derived from kp by 
using Eq. (7).

Next since p, q are prime, we have p[0] = q[0] = 1. 
In general, suppose that we have a partial solution p[0,

i −1], q[0, i −1], d[0, i −1]dp[0, i −1], dq[0, i −1] of level i. 
Heninger and Shacham derived four linear equations on 
five unknown variables p[i], q[i], d[i], dp[i], dq[i].1

Their method then creates all possible solutions p[0, i], 
q[0, i], d[0, i]dp[0, i], dq[0, i] of level i + 1 by appending 
p[i], q[i], d[i], dp[i], dq[i] to p[0, i − 1], q[0, i − 1], d[0,

i − 1]dp[0, i − 1], dq[0, i − 1] and prunes the incorrect ones 
by checking the validity of the available relation. In this 
way, their method can reconstruct p, q, d, dp , dq if δ ≥ 0.27
for small e.

3. How to avoid exhaustive search on k

The method of Heninger and Shacham [3] works when 
e is small because it includes the exhaustive search on k of 
Eq. (3), where 1 ≤ k ≤ e − 1. This is so even if large frac-
tion of SK is known. In this section we propose a method 
which reduces this search range of k.

1 We assume that k = kp = kq = 1 mod 2 for simplicity.
Fig. 1. How to derive the lower bound.

Fig. 2. How to derive the upper bound.

From Eq. (3), we have

k = ed − 1

N − (p + q) + 1
. (9)

In the above equation, some bits of p, q, and d are un-
known.

First we derive lower bounds on p, q, and d. This is 
done by simply substituting 0s into their unknown bits 
(see Fig. 1). In this way, we can obtain lower bounds on 
p, q, and d. Let denote them by pL , qL , and dL .

Similarly we can derive upper bounds on p, q, and d. 
This is done by simply substituting 1s into their unknown 
bits (see Fig. 2). Let denote them by pU , qU , and dU .

By substituting pL , qL , and dL into Eq. (9), we can com-
pute a lower bound k as follows.

kL = edL − 1

N − (pL + qL) + 1
. (10)

Similarly, by substituting pU , qU , and dU into Eq. (9), 
we can compute an upper bound on k as follows.

kU = edU − 1

N − (pU + qU ) + 1
. (11)

Therefore we see that

kL ≤ k ≤ kU .

Further suppose that p < q < 2p. Then it is easy to see 
that

2
√

N < p + q < 3
√

N.

Define

k′
L = edL − 1

N − 2
√

N + 1

k′
U = edU − 1

N − 3
√

N + 1

Then we obtain that

k′ ≤ k ≤ k′ .
L U
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Table 1
T = (new search range/previous search range).

↓ e → δ 0.27 0.4 0.5 0.6 0.7

216 + 1 0.47 0.38 0.32 0.23 0.16

230 + 1 0.46 0.37 0.32 0.24 0.18

240 + 1 0.47 0.38 0.31 0.24 0.18

250 + 1 0.46 0.37 0.32 0.24 0.18

Fig. 3. Comparison for e = 216 + 1.

Finally define

k′′
L = max{kL,k′

L}
k′′

U = min{kU ,k′′
U }

Then we have

k′′
L ≤ k ≤ k′′

U .

This means that the search range of k is reduced to the 
above from 1 ≤ k ≤ e − 1. Hence we define the reduced 
ratio as follows.

T = k′′
U − k′′

L

e
. (12)
4. Formula on the search range

In this section, we derive a formula on the search range 
of the proposed method. Suppose that N and d are n-bit 
long. Let d[i] denote the ith bit of d, where d[n − 1] is 
the most significant bit. If d[n − 1] is unknown, then dU −
dL ≈ 2n . If d[n − 1] is known and d[n − 2] is known, then 
dU − dL ≈ 2n−1. Therefore

E[dU − dL] ≈ 2nδ + 2n−1δ(1 − δ) + · · ·
Hence

E[T ] = E[k′′
U − k′′

L ]/e

≈ E[dU − dL]/N

≈ E[dU − dL]/2n

≈ (δ + 2−1δ(1 − δ) + · · ·)
= (1 − δ)/(1 − 2−1δ)

= 2

(
1 − 1

2 − δ

)

We then have a formula on the search range of the pro-
posed method as

E[k′′
U − k′′

L ] ≈ 2e

(
1 − 1

2 − δ

)
(13)

Simulation. Suppose that |N| = 1024 and δ fraction bits 
of p, q, d are known. Table 1 shows the average of T over 
100 simulations. Fig. 3 shows a comparison for e = 216 +1.

From Table 1 and Fig. 3, we can see that the bigger δ is, 
the better our method is. We can also see that Eq. (13) is 
a good approximation.
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